```
    .3DS File Format
    3D Studio File Format (3ds).
    Autodesk Ltd.
Document Revision 0.8 - December 1994. First Public Release.
If you have any additions or comments to this file please e-mail me.
A lot of the chunks are still undocumented if you know what they
do please email me. As I get more information of the file format
I will document it for everyone to see. I will post this regularly
to alt.3d and I can be contacted there if my email does not work.
Disclaimer.
This document describes the file format of the 3ds files of 3D studio
by Autodesk. By using the information contained within you agree not
to hold me liable if, from its use, you f^Hmuck something up. OK?
Oh and just to make it clear I DO NOT work for Autodesk if you have
any problems with their programs direct it to them not me!
Get to it!
Now with the joviality's aside all this info I have obtained with
lots of work hacking at 3ds files with a diskeditor and diff.
It has taken many months of hard work and piddling around with them
so I hope that it is appreciated.
Remember information wants to be free!
* Jim Pitts. - 18 December 1994
Contact me at jp5@ukc.ac.uk
1.
```

The 3ds file format is made up of chunks. They describe what information is to follow and what it is made up of, its ID and the location of the next main block. If you don't understand a chuck you can quite simply skip it. The next chunk pointer is relative to the start of the current chunk and in bytes.

* A Chunk.

start end	size	name	
0	1	2	Chunk ID
2	5	4	Next Chunk

Chunks have a hierarchy imposed on them that is identified by its ID. A 3ds file has the Primary chunk ID 4D4Dh. This is always the first chunk of the file. With in the primary chunk are the main chunks.

* Main Chunks
3D3D Start of object mesh data.
B000 Start of keyframer data.

The Next Chunk pointer after the ID block points to the next Main chunk.
Directly after a Main chunk is another chunk. This could be any other type of chunk allowable within its main chunks scope.

For the Mesh description (3D3D) they could be any multiples of .

* Subchunks of 3D3D. - Mesh Block

id	Description
1100	unknown
1200	Background Colour.
1201	unknown
1300	unknown
1400	unknown
1420	unknown
1450	unknown
1500	unknown
2100	Ambient Colour Block
2200	fog?
2201	fog?
2210	fog?
2300	unknown
3000	unknown
4000	Object Block
7001	unknown
AFFF	unknown

* Subchunks of 4000 - Object Description Block
- first item of Subchunk 4000 is an ASCIIZ string of the objects name.

Remember an object can be a mesh, a light or a camera.

id	Description
4010	unknown
4012	shadow?
4100	Triangular Polygon Object
4600	Light
4700	Camera

* Subchunks of 4100 - Triangular Polygon Object

10	13	4	float	Z value
..
..

bytes 2 .. 13 are repeated [Total vertices in object] times for each vertex.
 bytes 2..3 are repeated for X times as described by short int at start of record.

```
* 4120 - Points List
\begin{tabular}{ccccl} 
start end & size & type & name \\
0 & 1 & 2 & short int & Total polygons in object - numpoly \\
& & & & \\
2 & 3 & 2 & short int & Point 1 \\
4 & 5 & 2 & short int & Point 2 \\
6 & 7 & 2 & short int & Point 3 \\
. & . & . & .. & .. \\
. & . & . & . & ..
\end{tabular}
    Repeats 'numpoly' times for each polygon.
    These points refer to the corresponding vertex of
    the triangular polygon from the vertex list.
    Points are organized in a clock-wise order.
* 4160 - Translation Matrix
    This structure describes a matrix for the object.
    It is stored as a 3 X 4 matrix because it is assumed that
    the right most column is 0,0,0,1
\begin{tabular}{|c|c|c|c|c|}
\hline start & end & size & type & name \\
\hline 0 & 3 & 4 & float & matrix 1,1 \\
\hline 4 & 7 & 4 & float & matrix 1,2 \\
\hline 8 & 11 & 4 & float & matrix 1,3 \\
\hline 12 & 15 & 4 & float & matrix 2,1 \\
\hline 16 & 19 & 4 & float & matrix 2,2 \\
\hline 20 & 23 & 4 & float & matrix 2,3 \\
\hline 24 & 27 & 4 & float & matrix 3,1 \\
\hline 28 & 31 & 4 & float & matrix 3,2 \\
\hline 32 & 35 & 4 & float & matrix 3,3 \\
\hline 36 & 39 & 4 & float & matrix 4,1 \\
\hline 40 & 43 & 4 & float & matrix 4,2 \\
\hline 44 & 47 & 4 & float & matrix 4,3 \\
\hline
\end{tabular}
* 4600 - Light
start end size type name
```

0	3	4	float	Light pos X
4	7	4	float	Light pos Y
8	11	4	float	Light pos Z

after this structure check for more chunks.

id	Description	(full description later)
0010	RGB colour	
0011	24 bit Colour	
4610	Spot light	
4620	Light is off	(Boolean)

$* 4610$		Spot Light		
start end				size
type	name			
0	3	4	float	Target pos X
4	7	4	float	Target pos Y
8	11	4	float	Target pos Z
12	15	4	float	Hotspot
16	19	4	float	Falloff

$* 0010-$	RGB colour			
start end	size	type	name	
0	3	4	float	Red
4	7	4	float	Green
8	11	4	float	Blue

* 0011 - RGB colour - 24 bit

start end	size	type	name	
0	0	1	byte	Red
1	1	1	byte	Green
2	2	1	byte	Blue

* 4700		Camera			scene.
Describes		the details		mera in the	
start	end	size	type	name	
0	3	4	float	Camera pos X	
4	7	4	float	Camera pos Y	Y
8	11	4	float	Camera pos Z	
12	15	4	float	Target pos X	
16	19	4	float	Target pos Y	
20	23	4	float	Target pos z	
24	27	4	float	Camera Bank	
28	31	4	float	Camera Lens	

* 7001 - unknown chunk
nothing known about this chunk except for its Subchunks. This chunk also exists as a Subchunk in chunk B000 (keyframer info).

id	Description
7011	unknown
7020	unknown

* B000 - Keyframer Main chunk.

Subchunks

id	Description
B010	Name \& Hierarchy
B011*	Name Dummy object
B013	unknown
B014*	unknown
B015	unknown
B020	Objects pivot point?
B021	unknown
B022	unknown

```
                ( * only on dummy objects )
```

* B010 - Name \& hierarchy descriptor

start end	size	type	name	
0	$?$	$?$	ASCIIZ	Object name
$?$	$?$	$?$	short int	unknown
$?$	$?$	$?$	short int	unknown
$?$	$?$	$?$	short int	Hierarchy of object

The object hierarchy is a bit complex but works like this. Each object in the scene is given a number to identify its order in the tree. Also each object is ordered in the 3ds file as it would appear in the tree.
The root object is given the number -1 (FFFF).
As the file is read a counter of the object number
is kept.
Is the counter increments the object are children of the previous objects. But when the pattern is broken by a number that will be less than the current counter the hierarchy returns to that level.
for example.
object hierarchy
name

A	-1	
B	0	
C	1	This example is taken
D	2	from 50pman.3ds.

E	1
F	4
G	5
H	1
I	7
J	8
K	0
L	10
M	11
N	0
O	13
P	14

Still not done with this chunk yet!
If the object name is $\$ \$ \$ D U M M Y$ then it is a dummy object and therefore you should expect a few extra chunks.

* B011 - Dummy objects name.

Names a dummy object. ASCIIZ string.

* B020 - Pivot Point?

The objects pivot point. Not quite sure what the first five floats do yet (ideas?).

start	end	size	type	name	
0	3	4	float	unknown	
4	7	4	float	unknown	
8	11	4	float	unknown	
12	15	4	float	unknown	
16	19	4	27	4	float
28	32	4	float	Pivot Z	Pivot Y

[BACK] Back

